USDA-ARS MBr Alternative Area-Wide Project-South Atlantic Region: <u>Forest Tree Nurseries</u> Objective: To evaluate the effects of a number of MBr alternatives in large demonstration plots that had previously shown promise in small-scale plots on: - Loblolly pine production - Soil-borne fungi - Weed control - Plant parasitic nematodes #### USDA-ARS South Atlantic Area-wide Trials: 2007-2012 | MBr Alternative | Components | Rate (lb/acre) | Plastic | # of
Trials | |----------------------------|--------------------------------------|----------------------------|-------------------------|----------------| | Chloropicrin | 100% Chloropicrin | 100, 150, 200,
250, 300 | HDPE, LDPE,
VIF, TIF | 8 | | Pic +® | | | HDPE, LDPE,
VIF, TIF | 8 | | Chlor 60 | 60% Chloropicrin & 40% 1,3 D | 100, 150, 200,
250, 400 | HDPE, LDPE,
VIF, TIF | 8 | | DMDS & Chlor
(Paladin®) | 79% DMDS & 21%
Chloropicrin | 70 (gal/acre) | HDPE | 6 | | New Pic + | 85% Chloropicrin & 15% solvent B | 300 | HDPE | 2 | | Midas® 98/2 | 98% methyl iodide & 2% Chloropicrin | | | 1 | | Midas® 50/50 | 50% methyl iodide & 50% Chloropicrin | 160 | VIF | 1 | # Methodology - MBr alternatives tested in 7 different nurseries / soils. - Trials spanned 2-3 year growing cycles. - Randomized complete block design with 4 replications. - Data collected in each nursery included the following: | <u>Data</u> | # Times per season | Timing | | |----------------------|--------------------|------------------------------------|--| | Seedling density | 3 | post-sowing/mid-
summer/lifting | | | Trichoderma | 2 | post-sowing/lifting | | | Nematodes | 2 | post-sowing/lifting | | | Seedling dry weight | 1 | lifting | | | Root collar diameter | 1 | lifting | | | Height | 1 | lifting | | | Root morphology* | 1 | lifting | | ^{*}root length, root diameter, root volume, and number of root tips # Update on Current Area-wide Trials <u>Camden, AL</u> # 2009 Trial-Fumigation Treatments-Camden, AL | Fumigant | Rate (lb/acre) | Components | | |--------------|----------------|--------------------------------------|--| | MBr | 350 | 67% MBr & 33% Chloropicrin | | | MBrC 70/30 | 400 | 70% MBr (98/2) & 30% Solvent | | | Chloropicrin | 300 | 100% Chloropicrin | | | Chlor 60 | 400 | 60% Chloropicrin & 40% 1,3-D | | | Pic +® | 300 | 85% Chloropicrin & 15% Solvent A | | | DMDS + Chlor | 70 (gal/acre) | 79% DMDS & 21% Chloropicrin | | | | | | | | Midas® 98/2 | 100 | 98% methyl iodide & 2% Chloropicrin | | | Midas® 50/50 | 160 | 50% methyl iodide & 50% Chloropicrin | | 2009 Trial: 3rd Growing Season (2011)-Seedling Density # At the end of the 3rd growing season..... - In the 2009 trial, there were no differences between the MBr alternatives tested for the following measurements: - Root weight ratio - Root length - Root surface area - Root diameter - Root volume - Root tip number - Seedling density - Trichoderma colony forming units ## 2010 Trial-Fumigation Treatments-Camden, AL | Fumigant | Rate (lb/acre) | Component | Plastic | |--------------|----------------|----------------------------------|---------| | MBr | 150 | 200/ MD = 200/ Chloropionin | TIE | | | 250 | 80% MBr & 20% Chloropicrin | TIF | | Chloropicrin | 150 | 1000/ (11 | TIF | | | 250 | 100% Chloropicrin | | | Chlor 60 | 150 | (00) Chi 0 400/ 1 2 D | TIL | | | 250 | 60% Chloropicrin & 40% 1,3-D | TIF | | Pic +® | 150 | 050/ C11 ' ' 0 150/ C 1 / A | TIF | | | 250 | 85% Chloropicrin & 15% Solvent A | | | | | | | | Chlor 60 | 150 | 600/ Chloropionin & 100/ 12 D | HDPE | | | 250 | 60% Chloropicrin & 40% 1,3-D | UDLE | 2010 Trial-2nd Growing Season (2011)-Seedling Density ## At the end of the 2nd growing season..... - In the 2010 trial, there were no differences between the MBr alternatives tested for the following measurements: - Root weight ratio - Root length - Root surface area - Root volume - Root tip number Fall 2012 will mark the end of the 2010 trial's 3rd growing season. Seedlings will be lifted at that time and root collar diameter, height, root morphology, dry biomass, and seedling density will be measured. #### Comments on MBr Alternatives # Midas® methyl iodide & chloropicrin Pulled off the US Market. ### New Pic + (85% chloropicrin & 15% solvent B) New solvent in this formulation. It did not control annual sedge and was dropped from further testing. ## Chlor 60 60% chloropicrin & 40% 1,3 dichloropropene - This alternative has performed comparatively well to MBr in our trials. - Nutsedge control is lacking. - Nursery managers may choose this alternative if they have a nematode problem and nutsedge is not an issue. ### Top 3 MBr Alternatives (as of October 2011) - 1. Pic +® (85% chloropicrin & 15% solvent A) - 2. Chloropicrin (100% chloropicrin) - 3. DMDS & Chloropicrin (79% dimethyl disulfide & 21% chloropicrin) #### Based on: - Seedling quality data, root morphology, Trichoderma levels and no excessive nematode or weed problems. - Using VIF and TIF #### Notes: The unpleasant odor of DMDS may limit its acceptance as a MBr alternative by some nursery managers. # Management Implications - We have identified some alternatives that act as decent pesticides and produce quality seedlings. - Any choice of current alternatives will likely require an increased use of pesticides to compensate for alternative short falls. - The long term effects of the best alternatives are unknown. - An alternative that works well in one nursery may not be as effective in another nursery. # Management Implications - A good starting point with high barrier plastics such as TIF or VIF in broadcast applications has been important. - Rate with VIF/TIF = Old Rate under HDPE/LDPE - A alternative becomes more effective when chloropicrin (>20%) is included. - DMDS vs. <u>DMDS & Chloropicrin</u> (Paladin[®]) - Telone vs. <u>Telone & Chloropicrin</u> (Chlor60)